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SUMMARY 

It is pointed out that there exists a hidden analogy between magnetohydrodynamic (MHD) and conventional 
computational fluid dynamic (CFD) equations. This allows the generalization of any conventional CFD code so 
that the effects of MHD can be accounted for. This generalization is actually made for the FLUENT CFD code. 
Although this generalized FLUENT code can easily be adjusted to any MHD environment, it has been specifically 
designed for metallurgical applications. Predictions of the code are validated against the analytical solutions for the 
Poiseuille-Hartmann flow and for the shielding of magnetic field oscillations by a conducting medium (skin 
effect). 

KEY WORDS: computational fluid dynamics; magnetohydrodynamics 

1. INTRODUCTION 

Different approaches to MHD modelling have been discussed in numerous papers'-' and results of this 
modelling have been used in a number of industrial applications including metallurgical engineering 
and electromagnetic processing of Without going into details of numerical analyses of 
these papers we just note that their approach was based on the combined solution of MHD and CFD 
equations with MHD part of the code being in a certain sense independent of its CFD part. In contrast 
to these papers we will draw attention to the hidden analogy between the MHD equations and those of 
conventional CFD. This analogy makes it possible to generalize any conventional CFD code so that the 
effects of MHD can be accounted for. In our case this generalization has been applied to the FLUENT 
CFD code which has been widely used for different industrial applications (including such non-trivial 
applications as the solution of the Bolmann eq~at ion '~  and modelling of the processes in COz 
lasers''). 

Basic equations of MHD and their approximations are discussed in Section 2. In Section 3 we 
discuss an analogy between MHD and conventional CFD equations and numerical aspects of the 
implementation of MHD equations into the FLUENT code. In Section 4 we discuss an application of 
the generalized FLUENT code to simple problems of the Poiseuille-Hartmann flow and the shielding 
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of magnetic field oscillations by a conducting medium, when the predictions of FLUENT can be 
verified against the analytical solutions. In the same section we briefly discuss the application of our 
code to MHD simulations used for modelling the continuous casting process. The main conclusions of 
the paper are summarized in Section 5 .  

2. BASIC EQUATIONS AND APPROXIMATIONS 

Magnetic and electric fields do not influence the mass conservation equation, which can be written in 
exactly the same form as in conventional hydrodynamics. The momentum conservation (Navier- 
Stokes) equation, however, gets an extra electromagnetic force j x B, where j is the electric current 
density, B is the magnetic field induction. As a result this equation in MHD can be written as 

dv 
p z  = Fh + j x B, 

where p is the liquid or gas density, v is the velocity, Fh summarizes all forces in conventional 
hydrodynamics. In a similar way the enthalpy (h) equation in MHD can be written as 

where Qh summarizes all terms used in the conventional hydrodynamics, E is the electrical field 
strength, v is the average mass velocity. Equation (2) effectively describes the heating of the medium 
by electrical current. 

When the distributions of j, E and B are known then the MHD equations can be solved in exactly 
the same way as equations of conventional hydrodynamics with additional terms in equations (1) and 
(2). The complications arise due to the fact that the motion of gas or liquid in MHD influences the 
values of j, E and B and in most practically important problems it is impossible to consider these 
parameters as a priori known. To determine them self-consistently, extra equations are needed. These 
equations are the Maxwell equations, the Ohm equation and the equation of conservation of charges. 
For practical applications, however, it is more convenient not to use these equations directly, but 
alternative systems of equations, the form of which depends on the particular problem under 
consideration. These systems of equations are obviously consistent with the basic equations. One of 
these problems, particularly relevant to metallurgical applications will be discussed below. 

If we assume that the values of the magnetic field at the boundaries are given then the distribution of 
this field inside the enclosure is determined by the equation 

aB 1 
-= v x (V x B)+-v*B, 
at CP 

(3) 

where 0 is the electrical conductivity (in l/(Q m)) assumed to be isotropic and constant, p is the 
magnetic permeability (in Wm). 

Our code will not be designed for the analysis of ferromagnetic materials. Hence, p will be assumed 
to be close to the magnetic permeability of the vacuum, po = 1.257 x 

Once the distribution of B is determined from equation (3), then the distribution of currents can be 
determined from the equation 

Wm. 

(4) 
1 

c1 
j = -(V x B). 

When deriving (4) we ignored the contribution of the displacement current, which is justified for 
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most practical applications except for processes rapidly varying in time (high frequency waves). These 
processes, however, are not normally described by conventional CFD codes anyway. 

Once we obtained the distribution of B and j from equations (3) and (4) the distribution of electrical 
potential, 4, and correspondingly the distribution of the electrical field strength, E = - V 4, can be 
obtained from the equation: 

1 
E = - V 4 = - v x B + - j .  cr ( 5 )  

When deriving (5) we ignored the contribution of Hall currents and assumed that Pedersen 
conductivity is equal to the conductivity along magnetic field lines. These assumptions are justified for 
metallurgical applications which will be primarily kept in mind. 

The values of B at the boundaries can be arbitrarily determined. Caution, however, needs to be 
exercised so that these conditions are not contradictory. In particular, the normal component of the 
magnetic field at the boundary, B, should be zero in the case of perfectly conducting walls if we look 
for the steady state solution to the problem. In this case the tangential components of j and E as 
determined by (4) and (5) will be equal to zero as expected. 

Explicit expressions of the equations presented in this section in different coordinate systems is 
given in Appendix. Meanwhile, in the next section we will discuss the analogy between the MHD 
equations and the conventional CFD equations. 

3. ANALOGY BETWEEN MHD AND CONVENTIONAL CFD EQUATIONS 

As mentioned in Section 2, the momentum conservation and enthalpy equations in MHD have the 
same form as in the conventional CFD except the additional terms j x B (Lorentz force) and j . E 
(electrical heating). Hence, conventional CFD solvers can be used for solving these equations in MHD 
problems by simply adding these terms as source terms. 

Equation (3) looks different from the equations used in the conventional CFD. However, even in this 
case we can see an analogy between this equation and the enthalpy equation solved in conventional 
CFD, as will be shown below. 

In the limit c --f 0 equation (3) reduces to: 

This equation describes the diffusion of the magnetic field and has exactly the same structure as the 
enthalpy equation with zero velocities and accounting for thermal conductivity effects only: the latter 
term is mathematically equivalent to (l/cp) V *B term for all three components of the magnetic field. 
Hence the solver for the enthalpy equation in the conventional CFD can be used for solving equation 
(6)  by replacing the enthalpy by the components of the magnetic field B. 

In the opposite limiting case cr --f w equation (3) reduces to: 

= V x (v x B). 
at (7) 

This equation (for frozen-in magnetic field lines) cannot obviously be identified with any of the 
equations used in the conventional CFD as it contains cross dependence between different components 
of the magnetic field and derivatives with respect to different coordinates for each magnetic field 
component (see Appendix). However, if we rearrange this equation for one of the components 
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(x-component in our case) into the following form (cf. equation (3)): 

(8) 
a& a(vxBx) a(vyBx) I a(vzBx) a(vx&) a(vxBy) a(vxBz) - +-+- 
at ax ?Y az ax ar az ' -+-+- 

it becomes noticeable that the left-hand side of this equation has exactly the same form as the 
Lagrangian derivative in the enthalpy equation. The terms on the right-hand side of (8) can be treated 
as the additional 'source terms'. These terms can be treated in a similar way as source terms in the 
enthalpy equation. Other component of B can be treated in exactly the same way (see (A3HA5) and 
(A8XAlO)). 

Returning to the general equation (3) we can now recognize the hidden analogy between this 
equation and the enthalpy equation. Let us illustrate this by writing equation (3) for the Bx component 
in Cartesian coordinate system in the form (cf. (A3)): 

a& a(VX&) WYBJ 
at ax ax ar az ?Y 

+- +""""I. (9) +- -+- 
The left-hand side of (9) is equivalent to the Lagrangian derivative of the enthalpy in the enthalpy 

equation. The first term on the right-hand side is equivalent to the diffusion terms in the enthalpy 
equation. The term in square brackets in (9) is equivalent to the source term in the enthalpy equation. 

The same analogy could be seen for other components of B and for different coordinate systems. 
Equations (4) and ( 5 )  are the explicit equations determining j and E. 
Based on the analogy between MHD and conventional CFD equations discussed in this section one 

can relatively easily generalize any conventional CFD code so that it can be used for solving MHD 
problems. In our case we used the finite difference numerical scheme" in the FLUENT code to solve 
the additional magnetic field or electric potential equations. In the next section we briefly describe how 
this has been done in the case of the FLUENT software package. 

4. APPLICATION 

The best way to validate the results of numerical computations is to compare them with analytical 
solutions. In what follows we will do this for the cases of the PoiseuilleHartmann flow and the 
shielding of magnetic field oscillations by a conducting medium (skin effect). 

4.1. Poiseuille-Hartmann flow 

The Poiseuille-Hartmann flow is a 1D flow of conducting and viscous liquid between two stationary 
walls with external magnetic field imposed perpendicular to these walls. Assuming that the walls are at 
y =  f L ,  using the boundary condition that the liquid velocity at y =  f L  is equal to zero, and 
assuming that the liquid moves in the x-direction under the influence of the pressure gradient, then the 
liquid velocity between these plates can be determined by the equation': 

where r = aplax is the pressure gradient in the x direction, Bo = B y  G = m B , , L , ,  q is the coefficient 
of dynamic viscosity. In the limit (r + 0 equation (10) predicts a parabolic velocity profile in a non- 
magnetized liquid as expected. When o#O then increase of Bo and o results in flattening of this 
profile. 
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The movement of liquid described by (10) induces the x-component of the magnetic field defined by 
the equation:' 

BQR, sinh(Gy/L) - ( , ~ / L ) ~ i n h  G B, = -- 
G cosh G - 1 , 

where R,=v,(L=O)Lap is the magnetic Reynolds number. Note that there is a mistake in the 
corresponding equation given in Reference 1. 

Taking the following values of parameters: density = 1.5 kg/m3, viscosity = 1.5 . lov4 kg/m/sec, 
electrical conductivity = 7.14 x lo5 l l (0  m), local pressure gradient r = -4.85 Pdm, we computed 
the functions v&) and B,(L) from equations (10) and (1 1) and based on the FLUENT software 
package with MHD effects accounted for. The results are presented in Figures 1 and 2. As follows from 
these figures, results predicted by FLUENT are very close to those predicted by (10) and (1 1). The 
slight deviations between these results can be explained by a non-zero value of v,, (flow profile slightly 
deformed along x-direction) which was not accounted for by the analytical solution. This gives us 
confidence that MHD effects have been correctly implemented into the FLUENT code. 

Note that the values of parameters used for our computations might not be very typical for the 
environment where our code is expected to be applied. The reason for choosing them was that they 
provide the formation of the asymptotical ID profile of velocity for realistic values of the distances 
from the inlet, thus enabling us to compare numerical results with analytical. 

4.2. Shielding of magnetic field oscillations 

Let us assume that the values of the magnetic field at the plane y = 0 oscillate with cyclic frequency 
v and the medium in the half-plane y > 0 is stationary and conducting (0 < CJ < 00). In this case 
equation (3) has an analytical solution in the half-plane y > 0:l6 

B = BO e x p ( - M y )  c o s ( m y  - 2nvt), (12) 

where t is time, Bo is the B vector at y = 0 and t = 0. 

0.1 

O.* i. 

0 
0 

0 . 
Numerical L] 

0 4  8 

0 0.005 0.01 0.015 0.02 0.025 
Y Position (ml 

Figure 1. Plots of v, versus y-position based on analytical (equation (10)) and numerical (FLUENT) results 
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Figure 2. Plots of B, versus y-position based on analytical (equation (1 1)) and numerical (FLUENT) results 

When deriving (12) we assumed that 

BO = 0) = Bo COS(~XV~) .  

As follows from (12) the amplitude of oscillations decreases with y and the rate of this decrease 
increases with increasing 0. This effective shielding of magnetic field oscillations by a conducting 
medium is known as the skin e f f e ~ t . ~  

Taking 0 = 7955 (Q m)-*, p = po (this choice of 0 and p provides that I/$@ = 10 and was made 
for illustrative purposes only), v = 1 s-l and t = 2 s (this choice of v and t provides that 2nvt = 471; by 
the end of the second period oscillations practically do not depend on the initial conditions (t = 0)) we 
computed the values of B based on our code and validated the numerical solution against predictions of 
equation (12). As follows from Figure 3 where both analytical and numerical results are presented, 
agreement between these results seems to be as good as in the case of the Poiseuille-Hartmann flow. 

4.3. MHD simulation related to modelling of continuous casting process 

Having passed this and a number of other similar tests, our MHD code has been applied to the 
simulation of continuous casting process in steel making. The efficiency, i.e. cost of the product, is 
strongly dependant on the casting speed, so that higher casting speed leads to higher productivity. 
Higher casting speed, however, leads to faster metal flow which prevents the shell from stable growth. 
Additionally it causes remelting, such as breaking out. Magnetohydrodynamic apparatuses are used in 
the continuous casting to decelerate andor stabilize the metal flow. Magnetic stress leads to 
modifications of the flow so that more favourable conditions for casting processes can be achieved. 
Numerical simulation based on the code we have described appears to be a powerful device for 
optimising the configuration and conditions of operation of these magnetohydrodynamic apparatuses. 
More detailed description of the results of this simulation is beyond the scope of this paper. 
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Figure 3.  Plots of the modula of B( 1 B 1 ) versus y-position based on analytical (equation (12)) and numerical (FLUENT) results 

5. CONCLUSIONS 

It is pointed out that from the point of view of numerical computations there exists a similarity between 
MHD and conventional CFD equations. This allows us to generalize any conventional CFD code so 
that the effects of MHD can be accounted for. This generalization has actually been made for the 
FLUENT CFD code. Predictions of the generalized FLUENT code have been validated against the 
analytical solutions for the Poiseuille-Hartmann flow and shielding of magnetic field oscillations by 
conducting medium. 
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APPENDIX 

For practical numerical coding and for discussing the analogy between MHD and CFD equations it is 
necessary to have explicit expressions of MHD equations in different coordinate systems. 

Basic equations in Cartesian coordinates 

In the right-handed Cartesian system equations (1H5) can be written as: 
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- (vzBy - vyBJ + ax 

ay d 

Ex = --- a4 

Ey = - - a4 = (v,B, - vZBJ + -jy, 

l J  
a4 E, = - - = (vyBx - v,By) + -jz, 
az D 

Basic equations in general curvilinear coordinates 

Equations (1) and (2) in general curvilinear coordinates can be Written in the same form as in 
Cartesian coordinates (see equations (Al) and (A2)) as Cartesian components of the corresponding 
vectors are stored both in Cartesian and curvilinear coordinates. Presentation of equations (3H5) in 
curvilinear co-ordinates is the following: 
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Equations (4) and ( 5 )  can be presented as: 

where J is Jacobian, b’ = J V  ti are area vectors, ti are curvilinear coordinates. 
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